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The effect of eddy viscosity on the velocity profile of 
steady flow in a uniform rough channel 

By S. M. A. HAQUE 
Department of Mathematics, University of Manohestart 

(Received 28 August 1958) 

The equation of motion is derived for the steady flow under gravity of st liquid in 
a uniform channel, including the effects of the friction of the bed and of the eddy 
viscosity for lateral mixing. The equation is solved to find the distribution of mean 
velocity across the channel when the cross-section is rectangular, triangular or 
trapezoidal. Numerical values are also given to indicate the extent to which 
eddy viscosity may affect the lateral distribution of mean velocity. 

1. Introduction 
We consider the steady flow of a river or channel with a straight course and 

having a bed which is uniform in its direction of flow, and which has the same 
downward slope at all its points. We take the x-axis in the downward direction o 
flow, and the y-axis horizontal and perpendicular to the direction of flow. Let 
u denote the mean velocity of the fluid particles lying on the straight line through 
any point of the bed parallel to the z-axis. The bed will exert a force on the moving 
fluid, and we shall assume that the force on a cylindrical column of fluid standing 
on area dxdy with generators parallel to the z-axis may be represented by 
- f IuI udxdy, where f is regarded as the coefficient of friction of the bed. This 
assumption is usually known in hydraulics as the Ch6zy formula, and references 
about it may be found in Stoker (1957, p. 466). The broad argument behind the 
Ch6zy formula is that the momentum of the fluid is destroyed when it is brought 
into contact with the bed by the eddies. The momentum of the column is propor- 
tional to u, and we assume that the speed of the eddies is proportional to lul. The 
rate of destruction of momentum will be proportional to the momentum of the 
column and to the rate at  which it is brought into contact with the bed, and hence 
can be represented by the term f I uI udxdy, where f is a constant of proportionality. 

The mixing process which brings fluid in contact with the bed will also cause 
lateral mixing. Since the mean velocity of flow will be a function of y, the mixing 
will give rise to viscous effects, and we assume that the effect is represented by v, 
the kinematic coefficient of eddy viscosity. In  the two following sections we shall 
regard v as a constant, but in later sections we shall make a different assumption 
which allows for the variation of v with the variation in depth and mean velocity. 
The inclination a of the bed to the horizon is assumed to be small, so that cos 01 = 1 
to a sufficient approximation, and we write sina = s. We shall also make the 

t On leave of absence from the University of Dacca, East Pakistan. 
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assumption that the pressure at any point is approximately the same as the 
hydrostatic pressure, which is proportional to the depth below the effective 
surface. 

Now consider the motion of a column of fluid standing on area dx dy. We assume 
that all points of the column are moving in the x-direction with velocity u, which 
is the mean velocity of the particles of the column. The forces acting on the 
column in the x-direction are: (i) - f u 2 d x d y  being the frictional force of the bed, 

(ii) gshdxdy  due to gravity, and (iii) - hv-dx d y  due to eddy-viscosity. If 
i Y (  : 1 

the motion is uniform, i.e. if there is no variation with x, the acceleration of the 
column will be zero, and the component of the force due to pressure will also be 
zero; therefore the equation of motion will be 

To obtain the Chbzy formula, the last term on the right-hand side of (1) is 
neglected, which gives 

u2 = 9- hs 
f 

The limitations of formula ( 2 )  are that (i) it neglects the boundary conditions at 
the walls of the channel where the mean velocity is necessarily zero, and that 
(ii) if dhldy is discontinuous at any point (e.g. in a triangular channel) duldy will 
also be discontinuous, implying an infinite viscous force at that point. These 
defects arise from the neglect of the last term in (1) in regions where it is important. 
We shall investigate the results when this term is included. 

2. The velocity profile in an infinitely wide rectangular channel with 
constant eddy viscosity 

We consider an infinitely wide rectangular channel, i.e. a channel in which 
h = H ,  a constant. If eddy viscosity is neglected, the velocity is given by 

Hs U L L .  
f (3) 

We shall seek a solution of equation ( 1 )  with constant v satisfying the boundary 
conditions u = 0 at y = 0 and u = U ,  duldy = 0 at y = co. Substitution of (3) in 

(1) gives d2u -+-(U2-u2) f = 0, 

which has the integral 
dy2 Hv  

($ )2  = m(u-u)(2u2- 2f U U - U 2 ) ,  

(4) 

the constant of integration being determined from the condition that duldy = 0 
when u = U .  

By the substitution v = 2 U + u in (5) it is easy to perform a second integration, 
and the result can be expressed in the form 

( 6 )  
u J3(ekg - 1) + .J2(ekg + 1) 
a = (J3( ekg + 1) + 42(ekg - 1) 
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where k = J(2f UIHV)  and the boundary condition at y = 0 has been used to 
eliminate the constant of integration. 

Table 1 gives some values of ulU against ky  according to equation (6). From 
the illustrative values off and v that will be considered in 9 8, it is seen that k is of 
the order of the reciprocal of H ,  so that the effect of eddy-viscosity in reducing the 
mean velocity is practically confined to a distance equal to a few times the depth. 

kY 0 0.2 0.4 0.8 2 4 

u p  0 0.153 0.228 0.502 0.716 0-998 

TABLE 1 

3. Velocity profile of a rectangular river of finite width with constant 
eddy viscosity 

Let 27 be the breadth of the river. In  this case we need a solution of (4) with the 
initial values u = 0 at y = 0 and du/dy = 0 at y = q. 

Let u = u* a t  y = 7; then the first integration of (4) gives 

(g) = Wv 2f (u* - u)  ( 3  u2 - u: - uu* - u2). 

Putting z = u* - u, the above equation reduces to 

(8) 

Equation (7)  can be integrated in terms of elliptic functions (e.g. see Milne- 
Thomson 1950, p. 29); and using the boundary condition that z = 0 at y = 7, 

where a = $u* + (3u2-34.)* 

y = $u* - ( 3  u2 - &&)*. 

we get 1: - (&)' dy = s," { - ( z  - a) ( z  - P)  ( z  - y )}-a dz 

( 3  u2 - $u"*$ - +* 
= 'dn-'[(z+(3u2-g~i)t-$u* 

where 

and m, = 

On simplification (9) yields 

h = 24(3U2 - gu"*)-& 

( 3  u2 - guip + gu* 
2( 3 u2 - $Ui)* 

- 

(3u2-%)3-?%* (3U2-&&&(1;1-y) 
(3U2 - guip - u - 1u 2 *  

from which u* can be found by use of the condition that u = 0 at y = 0. 
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4. Velocity profde in an infinitely wide rectangular channel with eddy 
viscosity varying linearly with depth and mean velocity 

We have so far assumed the kinematic coefficient of eddy viscosity to be con- 
stant, but it is perhaps more realistic to assume that eddy viscosity depends on 
the depth and the mean velocity. The depth of the channel will act as a limiting 
factor on the size of the eddies, and also we expect more rapidly moving eddies 
where the mean velocity is greater. The simplest assumption to allow for these 
facts is to assume that the eddy viscosity varies linearly with depth and mean 
velocity, and we write 

v = CHU, (13) 

where H is the uniform depth and c is a dimensionless constant. 
Substituting (3) and (13) in (l), we get 

d2u2 2f 
dy2 cH2 
-+-(U2-u2) = 0, 

which is a linear equation with constant coefficients in u2 and the solution of this 
equation which satisfies the boundary conditions u = 0 at  y = 0 and u = U at 
y = o o i s  

(15) s 2  = u2{1- e- (wc&Y~. 

5. Velocity profile of a rectangular channel of finite width with eddy 
viscosity varying linearly with depth and mean velocity 

We take the breadth to be 27 and seek a solution of (14) with the boundary 
conditions that u = 0 at  y = 0 and y = 27. The solution is 

The maximum velocity u* at y = 7 is given by 

u$ = U2[l -sech{(2f/cH2)*q}]. (17) 

6. Velocity profile of a triangular channel with eddy viscosity varying 
linearly with depth and mean velocity 

We have so far assumed the depth to be constant. We now consider a channel 
whose cross-section has the form of an isosceles triangle of base angle tan-l K .  The 
depth at a distance y from the bank is given by h = KY if y 6 7, and h = ~ ( 2 7  - y) 
if rj < y < 217, where 217 is the breadth of the channel. We need consider only the 
flow in the region 0 < y < 7, the flow in the other half of the channel being given 
by symmetry. 

Using v = chu, it  is easily seen that the equation of motion (1) reduces in this 
case to the form 
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The solution of this equation satisfying the boundary conditions u = 0 at  y = 0 
and du/dy = 0 at y = 7 is 

7. Velocity profile in a trapezoidal channel with eddy viscosity varying 
linearly with depth and mean velocity 

We have found solutions for a rectangular channel in $ 5 ,  and for a triangular 
channel in $6.  It is possible to combine the equations obtained in these two 
sections to find solutions for a trapezoidal channel. Assume that in the channel 
of width 27, the depth is given by h = KY for 0 < y < ql, h = H = ~7~ for 
ql < y < 27 - ql, and h = K(  27 - y) for (27 - rl) Q y Q 27. The equation of motion 
will be (18) for the regions 0 < y < yl and (27 - ql) < y < 27, and will be (14) for 
the region vl < y < 27 - rjl. 

We take the general solutions of (18) and (14)) and apply the boundary condi- 
tions: (i) u = 0 at y = 0; (ii) u is continuous at  y = ql; (iii) du/dy = 0 at  y = 7; 
(iv) du/dy is continuous at  y = rl. 

Hence, the solution for the region 0 6 y Q 7 (the solution for the other half is 
given by symmetry) is found to be 

8. Numerical estimation of the effect of eddy viscosity on different 
velocity profiles 

Numerical estimation of the velocity profiles in particular cases is rendered 
difficult by the fact that reliable values of the coefficient of eddy viscosity are not 
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available. However, we know (e.g. from Schlichting 1955, p. 406) that in a tur- 
bulent %ow over a rough surface, the velocity profile is given by 

; ~ i  = 2.5~flogz+const., (25) 

where r is the drag per unit area of the surface and z is the height above the surface. 
The value C of eddy viscosity in the neighbourhood of the surfaces is given by 

We assume that the expression (26) for 5 holds throughout the fluid, and hence 
the mean value v of 5 is 0.2 f *uh. Hence, from the relation v = chu used in 5 6, 
we get that 

While no strict accuracy is claimed for (27), especially as it assumes the eddy 
viscosities for vertical and horizontal momentum exchange to be equal, it  is 
presumed that the value of c given by it is at  least of the correct order of magnitude. 

c = O.Zf*. (27) 

y/T ... 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

u /U  1.20 1.18 1.15 1.12 1.09 1.06 1.03 0.99 0.95 0.91 0.87 

ulumax 0 0.43 0.59 0-71 0.79 0.86 0.92 0.95 0.98 0.99 1.00 

TABLE 2 

y/l] .,. 0.0 0.1 0.2 0.3 0-4 0-5 0.6 0.7 0-8 0.9 1.0 

Ul u 1.04 1.04 1-04 1.04 1.04 1.03 1.02 1.01 0.99 0.96 0.92 

ulumax 0 0.36 0.51 0.62 0.71 0.79 0.86 0.92 0.96 0.99 1.00 

TABLE 3 

The value off will depend on the nature of the bed and the hydraulic radius of 
the channel, and it is best determined in terms of Manning’s coefficient n which 
is connected to f by the empirical relationships (see, for example, Rouse 1938, 
pp. 279 and 280) 

where R is the hydraulic radius expressed in feet. For illustrative purposes we 
shall take f = 0.005. For a channel of depth of about 20 ft. with a slope of one in 
a thousand, this coefficient corresponds to a bed of earth, gravel or rubble. 

We consider a triangular channel with f = 0.005 and s = 0.001. Table 2 gives 
the results when K = +, and table 3 gives the results when K = +. In  these tables, 
U denotes the mean velocity when eddy viscosity is neglected and u,,, denotes 
the mid-stream velocity. 

Similar calculations can be made for a trapezoidal channel. With K = +, 
f = 0.005, s = 0.001, H = 20, 7 = 2q1 = 120, the results given in table 4 are 
found. 
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The results show that the effects of eddy viscosity are important in regions 
where depth is changing, and in narrow channels. In wide rivers, its effects will 
be confined to near the walls. 

YITI  '.. 0 0.2 0.4 0.6 0.8 1.0 
U l  1.20 1.16 1.12 1.05 1.01 0.94 

~ 0 Y-41 
4-71 

0.2 0-4 0.6 0.8 1.0 

U P  0.94 0.97 0.98 0.99 0.99 0.99 

TABLE 4 
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